Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 209: 108545, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537381

RESUMO

Water shortage is one of the most important environmental factors limiting crop yield. In this study, we used wild soybean (Glycine soja Sieb. et Zucc.) and soybean (Glycinemax (L.) Merr.) seedlings as experimental materials, simulated drought stress using soil gravimetry, measured growth and physiological parameters, and analyzed differentially expressed genes and metabolites in the leaves of seedling by integrated transcriptomics and metabolomics techniques. The results indicate that under water deficit, Glycine soja maintained stable photosynthate by accumulating Mg2+, Fe3+, Mn2+, Zn2+ and B3+, and improved water absorption by increasing root growth. Notably, Glycine soja enhanced linoleic acid metabolism and plasma membrane intrinsic protein (PIP1) gene expression to maintain membrane fluidity, and increased pentose, glucuronate and galactose metabolism and thaumatin protein genes expression to remodel the cell wall, thereby increasing water-absorption to better tolerate to drought stress. In addition, it was found that secondary phenolic metabolism, such as phenylpropane biosynthesis, flavonoid biosynthesis and ascobate and aldarate metabolism were weakened, resulting in the collapse of the antioxidant system, which was the main reason for the sensitivity of Glycine max to drought stress. These results provide new insights into plant adaptation to water deficit and offer a theoretical basis for breeding soybean varieties with drought tolerance.


Assuntos
Fabaceae , Soja , Soja/genética , Secas , Fluidez de Membrana , Melhoramento Vegetal , Plântula , Água , Glicina
2.
J Environ Manage ; 354: 120239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354607

RESUMO

Most soil ammonia (NH3) emissions originate from soil nitrogen (N) that has been in the form of exchangeable ammonium. Emitted NH3 not only induces nutrient loss but also has adverse effects on the cycling of N and accelerates global warming. There is evidence that arbuscular mycorrhizal (AM) fungi can alleviate N loss by reducing N2O emissions in N-limited ecosystems, however, some studies have also found that global changes, such as warming and N deposition, can affect the growth and development of AM fungi and alter their functionality. Up to now, the impact of AM fungi on NH3 emissions, and whether global changes reduce the AM fungi's contribution to NH3 emissions reduction, has remained unclear. In this study, we examined how warming, N addition, and AM fungi alter NH3 emissions from high pH saline soils typical of a temperate meadow through a controlled microscopic experiment. The results showed that warming significantly increased soil NH3 emissions, but N addition and combined warming plus N addition had no impact. Inoculations with AM fungi strongly reduced NH3 emissions both under warming and N addition, but AM fungi effects were more pronounced under warming than following N addition. Inoculation with AM fungi reduced soil NH4+-N content and soil pH, and increased plant N content and soil net N mineralization rate while increasing the abundance of ammonia-oxidizing bacterial (AOB) gene. Structural equation modeling (SEM) shows that the regulation of NH3 emissions by AM fungi may be related to soil NH4+-N content and soil pH. These findings highlight that AM fungi can reduce N loss in the form of NH3 by increasing N turnover and uptake under global changes; thus, AM fungi play a vital role in alleviating the aggravation of N loss caused by global changes and in mitigating environmental pollution in the future.


Assuntos
Micorrizas , Micorrizas/fisiologia , Nitrogênio , Solo/química , Ecossistema , Amônia , Pradaria , Fungos , Microbiologia do Solo
3.
Physiol Plant ; 175(6): e14122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148213

RESUMO

Drought is one of the leading environmental constraints that affect the growth and development of plants and, ultimately, their yield and quality. Foxtail millet (Setaria italica) is a natural stress-resistant plant and an ideal model for studying plant drought resistance. In this study, two varieties of foxtail millet with different levels of drought resistance were used as the experimental material. The soil weighing method was used to simulate drought stress, and the differences in growth, photosynthetic physiology, metabolite metabolism, and gene transcriptional expression under drought stress were compared and analyzed. We aimed to determine the physiological and key metabolic regulation pathways of the drought-tolerant millet in resistance to drought stress. The results showed that drought-tolerant millet exhibited relatively stable growth and photosynthetic parameters under drought stress while maintaining a relatively stable level of photosynthetic pigments. The metabolomic, transcriptomic, and gene co-expression network analysis confirmed that the key to adaptation to drought by millet was to enhance lignin metabolism, promote the metabolism of fatty acids to be transformed into cutin and wax, and improve ascorbic acid circulation. These findings provided new insights into the metabolic regulatory network of millet adaptation to drought stress.


Assuntos
Plântula , Setaria (Planta) , Plântula/genética , Plântula/metabolismo , Milhetes/genética , Milhetes/metabolismo , Secas , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
4.
PeerJ ; 11: e15486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397019

RESUMO

Wild soybean (Glycine soja), the ancestor of cultivated soybean, has evolved into many ecotypes with different adaptations to adversity under the action of divergent evolution. Barren-tolerant wild soybean has developed adaptation to most nutrient-stress environments, especially with respect to low nitrogen (LN) conditions. This study describes the differences in physiological and metabolomic changes between common wild soybean (GS1) and barren-tolerant wild soybean(GS2) under LN stress. Compared with plants grown under the unstressed control (CK) conditions, the young leaves of barren-tolerant wild soybean under LN conditions maintained relatively stable chlorophyll, concentration and rates of photosynthesis and transpiration, as well as increased carotenoid content, whereas the net photosynthetic rate (PN) of GS1 decreased significantly 0.64-fold (p < 0.05) in the young leaves of GS1. The ratio of internal to atmospheric CO2 concentrations increased significantly 0.07-fold (p < 0.05), 0.09-fold (p < 0.05) in the young leaves of GS1 and GS2, respectively, and increased significantly 0.05-fold (p < 0.05) and 0.07-fold (p < 0.05) in the old leaves of GS1 and GS2, respectively, relative to the CK. The concentration of chlorophylls a and b decreased significantly 0.45-fold (p < 0.05), 0.13-fold (p > 0.05) in the young leaves of GS1 and GS2, respectively, and decreased significantly 0.74-fold (p < 0.01) and 0.60-fold (p < 0.01) in the old leaves of GS1 and GS2, respectively. Under LN stress, nitrate concentration in the young leaves of GS1 and GS2 decreased significantly 0.69- and 0.50-fold (p < 0.01), respectively, relative to CK, and decreased significantly 2.10-fold and 1.77-fold (p < 0.01) in the old leaves of GS1 and GS2, respectively. Barren-tolerant wild soybean increased the concentration of beneficial ion pairs. Under LN stress, Zn2+ significantly increased by 1.06- and 1.35-fold (p < 0.01) in the young and old leaves of GS2 (p < 0.01), but there was no significant change in GS1. The metabolism of amino acids and organic acids was high in GS2 young and old leaves, and the metabolites related to the TCA cycle were significantly increased. The 4-aminobutyric acid (GABA) concertation decreased significantly 0.70-fold (p < 0.05) in the young leaves of GS1 but increased 0.21-fold (p < 0.05) significantly in GS2. The relative concentration of proline increased significantly 1.21-fold (p < 0.01) and 2.85-fold (p < 0.01) in the young and old leaves of GS2. Under LN stress, GS2 could maintain photosynthesis rate and enhance the reabsorption of nitrate and magnesium in young leaves, compared to GS1. More importantly, GS2 exhibited increased amino acid and TCA cycle metabolism in young and old leaves. Adequate reabsorption of mineral and organic nutrients is an important strategy for barren-tolerant wild soybeans to survive under LN stress. Our research provides a new perspective on the exploitation and utilization of wild soybean resources.


Assuntos
Fabaceae , /metabolismo , Ecótipo , Nitrogênio/metabolismo , Nitratos/metabolismo , Fabaceae/metabolismo , Folhas de Planta/metabolismo
5.
Front Microbiol ; 14: 1231442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502394

RESUMO

Soil microbial communities have been influenced by global changes, which might negatively regulate aboveground communities and affect nutrient resource cycling. However, the influence of warming and nitrogen (N) addition and their combined effects on soil microbial community composition and structure are still not well understood. To explore the effect of warming and N addition on the composition and structure of soil microbial communities, a five-year field experiment was conducted in a temperate meadow. We examined the responses of soil fungal and bacterial community compositions and structures to warming and N addition using ITS gene and 16S rRNA gene MiSeq sequencing methods, respectively. Warming and N addition not only increased the diversity of soil fungal species but also affected the soil fungal community structure. Warming and N addition caused significant declines in soil bacterial richness but had few impacts on bacterial community structure. The changes in plant species richness affected the soil fungal community structure, while the changes in plant cover also affected the bacterial community structure. The response of the soil bacterial community structure to warming and N addition was lower than that of the fungal community structure. Our results highlight that the influence of global changes on soil fungal and bacterial community structures might be different, and which also might be determined, to some extent, by plant community, soil physicochemical properties, and climate characteristics at the regional scale.

6.
Planta ; 257(5): 95, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036535

RESUMO

MAIN CONCLUSION: The keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced reutilization of reserves in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. Soil alkalization of farmlands is increasingly serious, adversely restricting crop growth and endangering food security. Here, based on integrated analysis of transcriptomics and metabolomics, we systematically investigated changes in cotyledon weight and young root growth in response to alkali stress in two ecotypes of wild soybean after germination to reveal alkali-resistance mechanisms in barren-tolerant wild soybean. Compared with barren-tolerant wild soybean, the dry weight of common wild soybean cotyledons under alkali stress decreased slowly and the length of young roots shortened. In barren-tolerant wild soybean, nitrogen-transport amino acids asparagine and glutamate decreased in cotyledons but increased in young roots, and nitrogen-compound transporter genes and genes involved in asparagine metabolism were significantly up-regulated in both cotyledons and young roots. Moreover, isocitric, succinic, and L-malic acids involved in the glyoxylate cycle significantly accumulated and the malate synthetase gene was up-regulated in barren-tolerant wild soybean cotyledons. In barren-tolerant wild soybean young roots, glutamate and glycine related to glutathione metabolism increased significantly and the glutathione reductase gene was up-regulated. Pyruvic acid and citric acid involved in pyruvate-citrate metabolism increased distinctly and genes encoding pyruvate decarboxylase and citrate synthetase were up-regulated. Integrated analysis showed that the keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced protein decomposition, amino acid transport, and lipolysis in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. This study provides new ideas for the exploitation and utilization of wild soybean resources.


Assuntos
Fabaceae , /metabolismo , Germinação , Transcriptoma , Álcalis/metabolismo , Asparagina/genética , Asparagina/metabolismo , Antioxidantes/metabolismo , Fabaceae/genética , Nitrogênio/metabolismo , Citratos/metabolismo , Glutamatos/genética , Glutamatos/metabolismo
7.
Physiol Plant ; 175(1): e13863, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36688582

RESUMO

Salt stress has become one of the main factors limiting crop yield in recent years. The post-germinative growth is most sensitive to salt stress in soybean. In this study, cultivated and wild soybeans were used for an integrated metabonomics and transcriptomics analysis to determine whether wild soybean can resist salt stress by maintaining the mobilization of stored substances in cotyledons and the balance of carbon and nitrogen in the hypocotyl/root axis (HRA). Compared with wild soybean, the growth of cultivated soybean was significantly inhibited during the post-germinative growth period under salt stress. Integrating analysis found that the breakdown products of proteins, such as glutamate, glutamic acid, aspartic acid, and asparagine, increased significantly in wild soybean cotyledons. Asparagine synthase and fumarate hydratase genes and genes encoding HSP20 family proteins were specifically upregulated. In wild soybean HRA, levels of glutamic acid, aspartic acid, asparagine, citric acid, and succinic acid increased significantly, and the glutamate decarboxylase gene and the gene encoding carbonic anhydrase in nitrogen metabolism were significantly upregulated. The metabolic model indicated that wild soybean enhanced the decomposition of stored proteins and the transport of amino acids to the HRA in cotyledons and the GABA shunt to maintain carbon and nitrogen balance in the HRA to resist salt stress. This study provided a theoretical basis for cultivating salt-tolerant soybean varieties and opened opportunities for the development of sustainable agricultural practices.


Assuntos
Fabaceae , /metabolismo , Hipocótilo/metabolismo , Cotilédone/metabolismo , Tolerância ao Sal/genética , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Fabaceae/metabolismo , Ácido Glutâmico , Nitrogênio/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
8.
Plant Physiol Biochem ; 194: 406-417, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36493589

RESUMO

Plant growth, development, yield and quality are limited by barren soil. Soil phosphorus deficiency is one of the common factors causing soil barrenness. Plants have evolved morphological, physiological and molecular adaptations to resist to phosphorus deficiency. Wild soybean, a wild relative of cultivated soybean, has an obvious genetic relationship with cultivated soybean and has many beneficial characteristics such as strong low phosphorus resistance. Therefore, in this study, the integration analysis of transcriptome and metabolome of wild and cultivated soybean seedlings leaves were applied under phosphorus deficiency to reveal the mechanism of resistance to low phosphorus stress in wild soybean leaves, especially the key role of membrane phospholipid reuse and protection. Under phosphorus deficiency, wild soybean resisted low phosphorus stress by enhancing phosphorus reuse and strengthening membrane protection mechanisms, that is, by enhancing phospholipid metabolism, degrading membrane phospholipids, releasing phosphorus, increasing phosphorus reuse, and enhancing galactolipid biosynthesis. This, in turn, produced digalactosyl diacylglycerol to replace missing phospholipids for membrane maintenance and enhanced glutathione metabolism to protect the membrane system from damage. At the same time, phosphorus deficiency increased the levels of the intermediate metabolites glycine and ornithine, while significantly regulating the expression of transcription factors WRKY75 and MYB86. The enhancement of these metabolic pathways and the significant regulation of gene expression play an important role in improving the low phosphorus tolerance of wild soybean. This study will provide a useful theoretical basis for breeding soybean with low phosphorus tolerance.


Assuntos
Fabaceae , /metabolismo , Transcriptoma , Plântula/metabolismo , Metabolômica , Melhoramento Vegetal , Metaboloma , Fabaceae/metabolismo , Folhas de Planta/metabolismo , Fósforo/metabolismo , Solo , Regulação da Expressão Gênica de Plantas
9.
Front Plant Sci ; 13: 1006806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466240

RESUMO

Introduction: Plants undergo divergent adaptations to form different ecotypes when exposed to different habitats. Ecotypes with ecological adaptation advantages are excellent germplasm resources for crop improvement. Methods: his study comprehensively compared the differences in morphology and physiological mechanisms in the roots of two different ecotypes of wild soybean (Glycine soja) seedlings under artificially simulated low-phosphorus (LP) stress. Result: The seedlings of barren-tolerant wild soybean (GS2) suffered less damage than common wild soybean (GS1). GS2 absorbed more phosphorus (P) by increasing root length. In-depth integrated analyses of transcriptomics and metabolomics revealed the formation process of the ecological adaptability of the two different ecotypes wild soybean from the perspective of gene expression and metabolic changes. This study revealed the adaptation process of GS2 from the perspective of the adaptation of structural and molecular metabolism, mainly including: (1) Enhancing the metabolism of phenolic compounds, lignin, and organic acid metabolism could activate unavailable soil P; (2) Up-regulating genes encoding pectinesterase and phospholipase C (PLC) specifically could promote the reuse of structural P; (3) Some factors could reduce the oxidative damage to the membranes caused by LP stress, such as accumulating the metabolites putrescine and ascorbate significantly, up-regulating the genes encoding SQD2 (the key enzyme of sulfolipid substitution of phospholipids) substantially and enhancing the synthesis of secondary antioxidant metabolite anthocyanins and the AsA-GSH cycle; (4) enhancing the uptake of soil P by upregulating inorganic phosphate transporter, acid phosphatase ACP1, and purple acid phosphatase genes; (5) HSFA6b and MYB61 are the key TFs to resist LP stress. Discussion: In general, GS2 could resist LP stress by activating unavailable soil P, reusing plant structural P, rebuilding membrane lipids, and enhancing the antioxidant membrane protection system. Our study provides a new perspective for the study of divergent adaptation of plants.

10.
Planta ; 255(3): 53, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35099613

RESUMO

MAIN CONCLUSION: The poor-soil-tolerant wild soybean resist phosphorus deficiency by remodeling membrane lipids to reuse phosphorus. The plants synthesize phenolic acids and flavonoids to remove reactive oxygen species and protect membrane stability. Poor soil largely limits plant yields, and the development and utilization of high-quality wild plant resources is an effective approach to resolving this problem. Two ecotypes of wild soybean were used as experimental materials in this experiment. We integrated metabolomics and transcriptomics to determine whether wild soybean (Glycine soja) could resist phosphorus deficiency by remodeling and protecting its membrane system. Under phosphorus-deficient conditions, the plant height and aboveground fresh and dry weight of poor-soil-tolerant wild soybean seedlings were less inhibited than those in common wild soybean. In poor-soil-tolerant wild soybean seedling leaves, the glycerol-3-phosphate content decreased significantly, while caffeic acid, ferulic acid, shikimic acid, phenylalanine, tyrosine, and tryptophan increased significantly. ß-Glucosidase and chalcone synthase genes and those that encode SQD2, a crucial enzyme in thiolipid biosynthesis, were specifically up-regulated, whereas the glucosyltransferase UGT74B1 gene was down-regulated. The poor-soil-tolerant wild soybean enhanced glycerolipid metabolism to decompose phospholipids and release phosphorus for reuse to improve resistance to phosphorus deficiency. The plants synthesized thiolipids to replace phospholipids and maintain membrane structure integrity and inhibited glucosinolate biosynthesis to promote phenylpropanoid biosynthesis, leading to the production of phenolic acids and flavonoids that removed reactive oxygen species and protected membrane system stability. The experiments evaluated and provided insight into the innovative utilization of wild soybean germplasm resources.


Assuntos
Plântula , Glicina , Fósforo , Folhas de Planta
11.
Appl Environ Microbiol ; 87(22): e0152321, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34469189

RESUMO

We examined the impacts of warming, nitrogen (N) addition, and suppression of arbuscular mycorrhizal fungi (AMF) on soil bacterial and fungal richness and community composition in a field experiment. AMF root colonization and the concentration of an AMF-specific phospholipid fatty acid (PLFA) were significantly reduced after the application of the fungicide benomyl as a soil drench. Warming and N addition had no independent effects but interactively decreased soil fungal richness, while warming, N addition, and AMF suppression together reduced soil bacterial richness. Soil bacterial and fungal species diversity was lower with AMF suppression, indicating that AMF suppression has a negative effect on microbial diversity. Warming and N addition decreased the net loss of plant species and the plant species richness, respectively. AMF suppression reduced plant species richness and the net gain of plant species but enhanced the net loss of plant species. Structural equation modeling (SEM) demonstrated that the soil bacterial community responded to the increased soil temperature (ST) induced by warming and the increased soil available N (AN) induced by N addition through changes in AMF colonization and plant species richness; ST directly affected the bacterial community, but AN affected both the soil bacterial and fungal communities via AMF colonization. In addition, higher mycorrhizal colonization increased the plant species richness by increasing the net gains in plant species under warming and N addition. IMPORTANCE AMF can influence the composition and diversity of plant communities. Previous studies have shown that climate warming and N deposition reduce the effectiveness of AMF. However, how AMF affect soil bacterial and fungal communities under these global change drivers is still poorly understood. A 4-year field study revealed that AMF suppression decreased bacterial and fungal diversity irrespective of warming or N addition, while AMF suppression interacted with warming or N addition to reduce bacterial and fungal richness. In addition, bacterial and fungal community compositions were determined by mycorrhizal colonization, which was regulated by soil AN and ST. These results suggest that AMF suppression can aggravate the severe losses to native soil microbial diversity and functioning caused by global changes; thus, AMF play a vital role in maintaining belowground ecosystem stability in the future.


Assuntos
Mudança Climática , Micorrizas , Nitrogênio/química , Microbiologia do Solo , Bactérias/classificação , Ecossistema , Fungos/classificação , Solo/química
12.
Sci Total Environ ; 762: 143137, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33121784

RESUMO

Global change alters how terrestrial ecosystems function and makes them less stable over time. Global change can also suppress the development and effectiveness of arbuscular mycorrhizal fungi (AMF). This is concerning, as AMF have been shown to alleviate the negative influence of global changes on plant growth and maintain species coexistence. However, how AMF and global change interact and influence community temporal stability remains poorly understood. Here, we conducted a 4-year field experiment and used structural equation modeling (SEM) to explore the influence of elevated temperature, nitrogen (N) addition and AMF suppression on community temporal stability (quantified as the ratio of the mean community productivity to its standard deviation) in a temperate meadow in northern China. We found that elevated temperature and AMF suppression independently decreased the community temporal stability but that N addition had no impact. Community temporal stability was mainly driven by elevated temperature, N addition and AMF suppression that modulated the dominant species stability; to a lesser extent by the elevated temperature and AMF suppression that modulated AMF richness associated with community asynchrony; and finally by the N addition and AMF suppression that modulated mycorrhizal colonization. In addition, although N addition, AMF suppression and elevated temperature plus AMF suppression reduced plant species richness, there was no evidence that changes in community temporal stability were linked to changes in plant richness. SEM further showed that elevated temperature, N addition and AMF suppression regulated community temporal stability by influencing both the temporal mean and variation in community productivity. Our results suggest that global environmental changes may have appreciable consequences for the stability of temperate meadows while also highlighting the role of belowground AMF status in the responses of plant community temporal stability to global change.


Assuntos
Micorrizas , China , Ecossistema , Fungos , Pradaria , Micorrizas/química , Nitrogênio/análise , Raízes de Plantas/química , Solo , Microbiologia do Solo , Temperatura
13.
Sci Total Environ ; 686: 1129-1139, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31412509

RESUMO

Global change apart from ecosystem processes also influences the community structure of key organisms, such as arbuscular mycorrhizal fungi (AMF). We conducted a 3-year experiment where we suppressed with benomyl mycorrhiza to understand how AMF alter the plant community structure under warming and nitrogen (N) addition. The elemental content and foliar tissue stoichiometry of the dominant species Leymus chinensis and the subordinate species Puccinellia tenuiflora were studied along with soil nutrient stoichiometries. Overall, N addition enhanced plant N: phosphorus (P) ratios at a greater level than experimental warming did. Under global change conditions, AMF symbionts significantly increased soil available P concentrations, promoted plant P absorption and decreased the plant N:P ratios. AMF alleviate P limitation by reducing plant N:P ratios. Our results highlight that the negative influence of global change on plant productivity might cancel each other out through the additive effects of AMF and that global change will increase the dependency of plants on their mycorrhizal symbionts.


Assuntos
Aquecimento Global , Micorrizas/fisiologia , Nitrogênio/fisiologia , Fósforo/fisiologia , Poaceae/microbiologia , China , Fertilizantes/análise , Temperatura Alta , Nitrogênio/administração & dosagem
14.
Artigo em Inglês | MEDLINE | ID: mdl-31362434

RESUMO

: Soil and soil microbial biomass (SMB) carbon: nitrogen: phosphorus (C:N:P) stoichiometry are important parameters to determine soil balance of nutrients and circulation of materials, but how soil and SMB C:N:P stoichiometry is affected by climate change remains unclear. Field experiments with warming and N addition had been implemented since April 2007. Infrared radiators were used to manipulate temperature, and aqueous ammonium nitrate (10 g m-2 yr-1) was added to simulate nitrogen deposition. We found that molar nutrient ratios in the soil averaged 60:11:1, warming and warming plus N addition reduced soil C:N by 14.1% and 20% (P < 0.01), and reduced soil C:P ratios by 14.5% and 14.8% (P < 0.01). N addition reduced soil C:N significantly by 17.6% (P < 0.001) (Figs. 2B, 2D). N addition and warming plus N addition increased soil N:P significantly by 24.6% and 7.7% (P < 0.01). The SMB C:N, C:P and N:P ratios increased significantly with warming, N addition and warming plus N addition. Warming and N addition increased the correlations between SOC and soil microbial biomass C (SMBC), soil total P and soil microbial biomass P (SMBP), warming increased the correlation between the soil total N and soil microbial biomass N (SMBN). After four years' treatment, our results demonstrated that the combined effects of warming and N fertilization could change the C, N, P cycling by affecting soil and SMB C:N:P ratios significantly and differently. At the same time, our results suggested SMB might have weak homeostasis in Sonnen Grassland and warming and N addition would ease N-limitation but aggravate P-limitation in northeastern China. Furthermore, these results further the current demonstration of the relationships between the soil and SMB C:N:P stoichiometry in response to global change in temperate grassland ecosystems.


Assuntos
Carbono/química , Ecossistema , Nitrogênio/química , Fósforo/química , Microbiologia do Solo , Solo/química , Biomassa , China , Mudança Climática , Temperatura , Água
15.
Artigo em Inglês | MEDLINE | ID: mdl-30708940

RESUMO

Ecological stoichiometry has been widely used to determine how plant-soil systems respond to global change and to reveal which factors limit plant growth. Arbuscular mycorrhizal fungi (AMF) can increase plants' uptake of nutrients such as nitrogen (N) and phosphorus (P), thereby altering plant and soil stoichiometries. To understand the regulatory effect of AMF feedback on plants and soil stoichiometry under global change, a microcosm experiment was conducted with warming and N input. The C4 grass Setaria viridis, C3 grass Leymus chinensis, and Chenopodiaceae species Suaeda corniculata were studied. The results showed that the mycorrhizal benefits for the C4 grass S. viridis were greater than those for the C3 grass L. chinensis, whereas for the Chenopodiaceae species S. corniculata, AMF symbiosis was antagonistic. Under N input and a combination of warming and N input, AMF significantly decreased the N:P ratios of all three species. Under N input, the soil N content and the N:P ratio were decreased significantly in the presence of AMF, whereas the soil C:N ratio was increased. These results showed that AMF can reduce the P limitation caused by N input and improve the efficiency of nutrient utilization, slow the negative influence of global change on plant growth, and promote grassland sustainability.


Assuntos
Mudança Climática , Micorrizas/fisiologia , Nutrientes/metabolismo , Poaceae/metabolismo , Solo/química , China , Pradaria , Nitrogênio/análise , Nitrogênio/metabolismo , Nutrientes/análise , Fósforo/análise , Fósforo/metabolismo , Poaceae/classificação , Poaceae/microbiologia , Especificidade da Espécie
16.
Sci Total Environ ; 654: 863-871, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448675

RESUMO

Global nitrogen (N) enrichment likely alters plant community composition and increases productivity, consequently affecting ecosystem stability. Meanwhile, the effects of N addition on plant community composition and productivity are often influenced by phosphorus (P) nutrition, as the effects of N and P addition and interactions between N and P on plant community structure and productivity are still not well understood. An in situ experiment with N and P addition was conducted in a temperate meadow in northeastern China from 2013 to 2016. The responses of plant community composition, structure, functional group cover, richness and productivity to N and P additions were examined. N addition significantly reduced species richness and diversity but increased aboveground net primary productivity (ANPP) during the four-study-year period. P addition exerted no significant impact on species richness, diversity or ANPP but reduced cover of grasses and increased legume cover. Under N plus P addition, P addition alleviated the negative effects of N addition on community structure by increasing species richness and covers of legume and forbs. N and P additions significantly altered plant community structure and productivity in the functional groups. N addition significantly increased the cover of gramineous and reduced the cover of legume, P addition significantly increased legume cover. Our observations revealed that soil nutrient availability regulates plant community structure and ANPP in response to nutrient enrichment caused by anthropogenic activities in the temperate meadow. Our results highlight that the negative influence of N deposition on plant community composition might be alleviated by P input in the future.


Assuntos
Biomassa , Biota/efeitos dos fármacos , Pradaria , Nitrogênio/metabolismo , Fósforo/metabolismo , China , Nitrogênio/administração & dosagem , Fósforo/administração & dosagem
17.
Environ Pollut ; 242(Pt B): 1166-1175, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30114599

RESUMO

Plants growing in heavy-metal-rich soils can accumulate metals into their nectar. Nectar chemical composition can alter foraging behavior of floral visitors (including pollinators and floral antagonists) and further affect plant reproductive fitness. The role of nectar heavy metals in deterring pollinators (e.g., shortening foraging time) has been recently studied, but their effects on plant reproduction via changes in behaviors of both pollinators and floral antagonists (e.g., nectar robbers) are less understood. We experimentally manipulated four nectar heavy metals (Zn, Cu, Ni, and Pb) in a native ornamental plant, Hosta ensata F. Maekawa, to investigate the effect of nectar metals on plant reproductive success. We also recorded nectar robbing as well as foraging time and visitation rate of pollinators to assess whether nectar metals could alter the behavior of antagonists and mutualists. Although metals in nectar had no significant direct effects on plant reproduction via hand-pollination, we detected their positive indirect effects on components of female fitness mediated by pollinators and nectar robbers. Matching effects on female plant fitness, nectar robbers responded negatively to the presence of metals in nectar, robbing metal-treated flowers less often. Pollinators spent less time foraging on metal-treated flowers, but their visitation rate to metal-treated flowers was significantly higher than to control flowers. Moreover, pollinators removed less nectar from flowers treated with metals. Our results provide the first direct evidence to date that heavy metals in nectar are capable of deterring nectar robbers and modifying pollinator foraging behavior to enhance plant reproductive fitness.


Assuntos
Flores/química , Metais Pesados/análise , Polinização/efeitos dos fármacos , Poluentes do Solo/análise , Animais , Monitoramento Ambiental , Metais Pesados/toxicidade , Néctar de Plantas/química , Plantas , Reprodução/efeitos dos fármacos , Poluentes do Solo/toxicidade
18.
Int J Genomics ; 2018: 8561458, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977903

RESUMO

In this study, the genetic diversity and population structure of 205 wild soybean core collections in Northeast China from nine latitude populations and nine longitude populations were evaluated using SSR markers. A total of 973 alleles were detected by 43 SSR loci, and the average number of alleles per locus was 22.628. The mean Shannon information index (I) and the mean expected heterozygosity were 2.528 and 0.879, respectively. At the population level, the regions of 42°N and 124°E had the highest genetic diversity among all latitudes and longitudes. The greater the difference in latitude was, the greater the genetic distance was, whereas a similar trend was not found in longitude populations. Three main clusters (1N, <41°N-42°N; 2N, 43°N-44°N; and 3N, 45°N->49°N) were assigned to populations. AMOVA analysis showed that the genetic differentiation among latitude and longitude populations was 0.088 and 0.058, respectively, and the majority of genetic variation occurred within populations. The Mantel test revealed that genetic distance was significantly correlated with geographical distance (r = 0.207, p < 0.05). Furthermore, spatial autocorrelation analysis showed that there was a spatial structure (ω = 119.58, p < 0.01) and the correlation coefficient (r) decreased as distance increased within a radius of 250 km.

19.
Plant Physiol Biochem ; 123: 406-413, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29306188

RESUMO

To investigate the role that ginsenosides (and some of their metabolites) play in interactions between plants and phytopathogenic fungi (e.g. Cylindrocarpon destructans (Zinss) Scholten), we systematically determined the anti-fungal activities of six major ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1), along with the metabolites of ginsenoside Rb1 (Gypenoside XVII (G-XVII) and F2), against the ginseng root pathogen C. destructans (Zinss) Scholten and non-ginseng pathogens Fusarium graminearum Schw., Exserohilum turcicum (Pass.) Leonard et Suggs, Phytophthora megasperma Drech. and Pyricularia oryzae Cav. Our results showed that the growth of both ginseng pathogens and non-pathogens could be inhibited by using the proto-panaxatriol (PPT) ginsenosides Re and Rg1. In addition, the growth of the non-pathogens could also be inhibited by using proto-panaxadiol (PPD) ginsenosides Rb1, Rb2, Rc and Rd, whereas the growth of ginseng pathogen C. destructans (Zinss) Scholten was enhanced by ginsenosides Rb1 and Rb2. In contrast, ginsenoside G-XVII and F2 strongly inhibited the hyphal growth of both C. destructans (Zinss) Scholten and the non-pathogens tested. Furthermore, addition of sucrose to the media increased the growth of C. destructans (Zinss) Scholten, whereas glucose did not affect the growth. Moreover, C. destructans (Zinss) Scholten and all four non-pathogens were able to deglycosylate PPD ginsenosides using a similar transformation pathway, albeit with different sensitivities. We also discussed the anti-fungal structure-activity relationships of the ginsenosides. Our results suggest that the pathogenicity of C. destructans (Zinss) Scholten against ginseng root is independent of its ability to deglycosylate ginsenosides.


Assuntos
Antifúngicos/metabolismo , Ascomicetos/enzimologia , Proteínas Fúngicas/metabolismo , Ginsenosídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Panax , Doenças das Plantas/microbiologia , Panax/metabolismo , Panax/microbiologia
20.
Ecotoxicol Environ Saf ; 145: 235-243, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28738207

RESUMO

Metals and metalloids in soil could be transferred into reproductive organs and floral rewards of hyperaccumulator plants and influence their reproductive success, yet little is known whether non-hyperaccumulator plants can translocate heavy metals from soil into their floral organs and rewards (i.e., nectar and pollen) and, if so, whether plant reproduction will be affected. In our studies, summer squash (Cucurbita pepo L. cv. Golden Apple) was exposed to heavy-metal treatments during bud stage to investigate the translocation of soil-supplemented zinc, copper, nickel and lead into its floral organs (pistil, anther and nectary) and rewards (nectar and pollen) as well as floral metal accumulation effects on its reproduction. The results showed that metals taken up by squash did translocate into its floral organs and rewards, although metal accumulation varied depending on different metal types and concentrations as well as floral organ/reward types. Mean foraging time of honey bees to each male and female flower of squash grown in metal-supplemented soils was shorter relative to that of plants grown in control soils, although the visitation rate of honeybees to both male and female flowers was not affected by metal treatments. Pollen viability, pollen removal and deposition as well as mean mass per seed produced by metal-treated squash that received pollen from plants grown in control soils decreased with elevated soil-supplemented metal concentrations. The fact that squash could translocate soil-supplemented heavy metals into floral organs and rewards indicated possible reproductive consequences caused either directly (i.e., decreasing pollen viability or seed mass) or indirectly (i.e., affecting pollinators' visitation behavior to flowers) to plant fitness.


Assuntos
Cucurbita/química , Flores/química , Metais Pesados/análise , Néctar de Plantas/química , Pólen/química , Poluentes do Solo/análise , Animais , Abelhas/fisiologia , Cucurbita/fisiologia , Metais Pesados/toxicidade , Polinização/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Sementes/efeitos dos fármacos , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...